Fall 2024 Course Syllabus Biol432

Course Title:	Introduction to Computational Neuroscience	
Textbook:	"An Introductory Course in Computational Neuroscience" by P. Miller – MIT Press (2018), 1 st edition, ISBN: 978-0262038256	
Recommended Books:	"Mathematical Foundations of Neuroscience" by G. B. Ermentrout & D. H. Terman – Springer (2010), 1st edition - ISBN: 978-0-387-87707-5.	
	"Foundations of Cellular Neurophysiology" by D. Johnston & S. Wu – The MIT Press (1995) - ISBN: 0-262-100053-3.	
	"Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting" by E. M. Izhikevich – The MIT Press (2007), 1 st edition – ISBN: 0-262-09043-8.	
	"Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems" by P. Dayan & L. Abbott – The MIT Press (2001), 1st edition–ISBN: 0-262-04199-5.	
	"Biophysics of Computation: Information Processing in Single Neurons" by C. Koch – Oxford University Press (1999) – ISBN: 0-19-510491-9	
Prerequisites:	NJIT Catalog or Permission by instructor	
Website:	http://web.njit.edu/~horacio/IntroCompNeuro/IntroCompNeuroF24.html	

Week	Topic	Assignment
1	General Discussion about the course Introduction to Mathematical and Computational Neuroscience Passive membrane properties – The passive	See course website
2	membrane equation Ordinary differential equations (ODEs): Review of	"
2	analytical methods Ordinary differential equations (ODEs): Review of numerical methods (MATLAB, Python)	
3	Dynamics of the passive membrane The passive membrane equation	"
4	Integrate-and-fire models. The Hodgkin-Huxley model	ii.
5	Hodgkin-Huxley type models with additional ionic currents The cable equation	cc

6	Reduced models and reduction of dimensions	и
7	Introduction to dynamical system methods for neural models	66
8	One-dimensional neural models: Phase-space "analysis I	
9	Two-dimensional neural models: Phase-space analysis II	u
10	Sub-threshold oscillations: Two- and Three- dimensional models Bursting	ec
11	Synaptic dynamics & short-term plasticity	
12	Overview of network dynamics: small networks	"
13	Overview of network dynamics: large networks	"
14	Student Presentations	"
15	Student Presentations	"

IMPORTANT DATES				
FIRST DAY OF SEMESTER	Sep 3, 2024			
LAST DAY TO ADD/DROP	Sep 9, 2024			
THANKSGIVING RECESS	Nov 28 - Dec 1, 2024			
LAST DAY TO WITHDRAW	Nov 11, 2024			
LAST DAY OF CLASSES	December 11, 2024			
READING DAYS	December 12 & 13, 2024			
FINAL EXAM PERIOD	December 15-21, 2024			

Grading Policy (tentative)

Assignment Weighting		
Homework, Quizzes, Mini Projects & Class Participation	40	
Midterm Exam / Project	30	
Final Project / Presentation	30	

Tentative Grading Scale		
Α	90 100	
B+	85 – 89	
В	80 – 84	
C+	75 – 79	
С	70 – 74	
D	60 – 69	
F	0 59	

Course Policies: See course website.