

BIOLOGY 341: INTRO TO NEUROPHYSIOLOGY

INSTRUCTOR: Dirk Bucher (bucher@njit.edu) COURSE WEBSITE: http://njit2.mrooms.net/

OFFICE HOURS: T: 10:30 am, T: 10:30 am – CKB 337 **COURSE SCHEDULE:** T, F: 2:30 – 3:55 pm in FMH 205

COURSE SUMMARY:

This course will examine the nervous system from a functional perspective. The goal is to understand how ion channels and other components of nerve cells give rise to electrical excitability and synaptic function, and how those properties are then used for coding information and higher order function in the nervous system.

Техтвоок:

"From Neuron to Brain" 5th Ed., Nicholls et al., Sinauer © 2012; ISBN: 9780878936090.

LEARNING GOALS: AT THE END OF THE COURSE STUDENTS WILL BE ABLE...

- To understand in some detail how electrical and chemical signaling within and between nerve cells works.
- To understand the experimental and theoretical approaches used to study neurophysiology, both for basic research and medical diagnostics.
- To understand fundamental principles of how the nervous system uses electrical activity to encode and decode
 information about the outside world and internal states.
- To further develop critical thinking and communication skills. This will be measured in the ability to interpret graphs, experimental designs, and problem discussion. Students will be required to participate in instructor-led discussions of the material as they analyze problems and propose possible mechanisms used by neurons to solve them. Weekly quizzes will be used to test some of these goals and reinforce the learning of the material.

GRADING POLICY & SCALE:

Assignment	Percentage
Participation & Weekly Quizzes	25%
Midterm Exams	30%
Final Exam	30%
Homework assignment	15%
TOTAL	100%

Grading Scale		
Α	88.1 - 100	
B+	80.1 - 88	
В	73.1 - 80	
C+	66.1 - 73	
С	60.1 - 66	
D	50.1 - 60	
F	0 - 50	

IMPORTANT RULES AND POLICIES:

- Academic Integrity Code is strictly enforced.
- The use of cell phones and other two-way electronic devices during class or exam times is prohibited.
- If you miss an exam due to a valid medical excuse you need to provide a doctor's note or other valid and verifyable documentation. The grade of exams missed for a valid reason will be determined on a case-by-case basis.
- © <u>Course Repetition Policy</u>: An NJIT student may take a single course no more than four times (counting NJIT and another institutions), including withdrawals. If an undergraduate course is repeated at NJIT or the course is transferred from another institution, only then the lowest of the grades is excluded in computation of the cumulative GPA. All grades are shown on the student's transcript.

BIOLOGY 341: INTRO TO NEUROPHYSIOLOGY

SCHEDULE AND COURSE OUTLINE: Class will meet twice every week, unless otherwise noted.

WEEK/DATES	S	LECTURE TOPICS
Week 1 Tue, Sep 01 Fri, Sep 04		Introduction and course overview - What is Neurophysiology?
		Neurons and glia cells: Morphological and molecular diversity
Week 2	Tue, Sep 08	[Sep 08: last day to Add/Drop a class] Membrane potential I: lons, channels, Nernst Equation
Fri, Sep 11		Membrane potential II: GHK equation and equivalent circuit
Week 3	Tue, Sep 15	Passive properties: Input resistance, capacitance, length constant, time constant
	Fri, Sep 18	Action potential I: Ionic mechanisms
Week 4	Tue, Sep 22	Action potential II: Hodgkin-Huxley formalism, propagation, myelination
	Fri, Sep 25	Diversity of voltage-gated channels: molecular identities and effect on neuronal firing
Week 5 Tue, Sep 29		Review, examples and exercises
VVCCKS	Fri, Oct 02 Review, examples and exercises	
Week 6 Tue, Oct 06 Fri, Oct 09	Tue, Oct 06	MIDTERM EXAM I
	Fri, Oct 09	Electrical and chemical transmission: Gap junctions, crayfish escape system, frog neuromuscular junction.
Week 7 Tue, Oct 13		Central synapses, small molecule transmitters and ionotropic receptors.
Fri, Oct	Fri, Oct 16	Homework assignment, no class
Week 8	Tue, Oct 20	Metabotropic transmission, GPCRs, 2nd messenger signaling.
	Fri, Oct 23	Transmitter release I: Quantal analysis.
Week 9	Tue, Oct 27	Transmitter release II: SNARE complex, vesicle pools, postsynaptic receptors.
Week 9	Fri, Oct 30	Transmitter types: Synthesis, transport, release, re-uptake and degradation.
Wook 10	Tue, Nov 03	Types of communication: Transmitters, neuromodulators, neurohormones.
Week 10	Fri, Nov 06	Synaptic plasticity I: Short-term synaptic dynamics.
Week 11	Tue, Nov 10	Synaptic plasticity II: Long-term synaptic dynamics. Aplysia gill withdrawal, LTP, LTD
	Fri, Nov 13	Review, examples and exercises
Wook 12	Tue, Nov 17	Review, examples and exercises
Week 12	Fri, Nov 20	MIDTERM EXAM II
Wook 12	Tue, Nov 24	Sensory transduction, modalities, coding principles.
Week 13	Fri, Nov 27	Somatosensory and auditory coding
Week 14	Tue, Dec 01	Visual and chemosensory coding
	Fri, Dec 04	Motor coding: posture and movement control
Week 15	Tue, Dec 08	Review, examples and exercises
	Fri, Dec 11	READING DAY, NO CLASS
		FINAL EXAM WEEK: Dec 15-21 (FINAL EXAM DATE TBA)